Journal of Organometallic Chemistry, 194 (1980) C43-C45 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

APPLICATION OF OXYGEN-17 NMR TO MANGANESE CARBONYL COMPOUNDS

ROBIN L. KUMP and LEE J. TODD

Department of Chemistry, Indiana University, Bloomington, Indiana 47405 (U.S.A.) (Received March 26th, 1980)

Summary

¹⁷O NMR spectroscopy has been found to give better resolution of the carbonyl resonances of manganese carbonyl complexes and their triphenyl-phosphine derivatives than ¹³C NMR spectroscopy.

Although infrared spectroscopy is useful in elucidating the structures of some manganese carbonyl complexes the only conclusive method of determining the stereochemistry of manganese carbonyl complexes is X-ray crystallography. Due to the quadrupole moment of ⁵⁵Mn (I = 5/2), ¹³C NMR carbonyl signals of these complexes are in many cases very broad and unresolved [1–5]. In some cases the ¹³C resonances can be sharpened by thermal decoupling at lower temperatures [5]. We have found that oxygen-17 NMR provides a powerful alternative method for determining the structures of manganese carbonyl complexes. Since oxygen is not directly bonded to manganese in these complexes, ⁵⁵Mn–¹⁷O coupling is small and not observed. This absence of coupling allows ¹⁷O NMR spectra to be obtained at room temperature.

Thus the ¹⁷O NMR spectra of $Mn_2(CO)_{10}$ and $CH_3Mn(CO)_5$ (see Fig. 1) clearly resolve the equatorial and axial carbonyl signals while the ¹³C NMR carbonyl resonances are reported to be broad and not well resolved [1, 2]. Since previously only one broad carbonyl resonance was observed for the ¹³C NMR spectrum of $CH_3Mn(CO)_5$, it was not certain if at room temperature an intramolecular exchange of the ligands was occurring or if it was due to the ⁵⁵Mn-¹³C spinspin coupling [4]. The ¹⁷O NMR unambigously shows that an intramolecular exchange is not occurring under these conditions. The ¹⁷O NMR spectra of $Mn_2(CO)_9(PPh_3)$ [6] and $Mn_2(CO)_8(PPh_3)_2$ [7] (see Table 1) show clearly the triphenylphosphine ligand occupying the axial position in these two molecules. Comparison of the shielding trends for $Mn_2(CO)_{10}$ and its phosphine-substituted derivatives indicates that substitution causes an upfield shift of all the carbonyl signals relative to $Mn_2(CO)_{10}$. It is probable that the area four signal at 379.5 ppm of $Mn_2(CO)_9PPh_3$ is due to the equatorial carbonyls adjacent to triphenyl-

Fig. 1. The room temperature ¹⁷O NMR spectrum of MeMn(CO)₅ at natural abundance.

Compound ^a Mn ₂ (CO) ₁₀	$\delta(^{17}O)(ppm)^b$		Relative areas ^c	
	387.8	368.2	4/1	
Mn(CO), Čl ^d	386.7	378.7	1/4	
Mn(CO) ₅ Br	386.5	380.8	1/4	
MeMn(CO)	372.6	363.0	4/1	
Mn(CO) ₄ (PPh ₃)Br ^d	379.7 376.3	373.0	1/2/1	
Mn(CO) ₃ (PMe ₂ Ph) ₂ Br	371.2	364.4	1/2	
$Mn_2(CO)_9(PPh_3)$	384.7 379.5	359.7	4/4/1 ^e	
Mn ₂ (CO) ₈ (PPh ₃) ₂	377.9			
$Mn_2(CO)_8(PPh_3)_2$ $Mn_2(CO)_8Br_2^d$	392.3	381.3	1/1	

^aCH₂Cl₂ solvent. ^bDownfield positive relative to H₂O. ^cAll carbonyl resonances show 10 Hz $\leq \Delta v_1 \leq Hz$. ^dEnriched with C¹⁷O. ^e $\Delta v_1 \approx 110$ Hz.

phosphine. This assignment is based on the fact that the resonance for the equatorial carbonyls adjacent to triphenylphosphine in $Mn_2(CO)_8(PPh_3)_2$ occurs at 377.9 ppm. An upfield ¹⁷O carbonyl shift due to phosphine substitution has been observed in many [8,9] but not all cases [10]. The unique axial CO in $Mn_2(CO)_9(PPh_3)$ has a much broader resonance $(\Delta v_1 \approx 110 \text{ Hz})$ compared to the equatorial carbonyls $(\Delta v_1 \approx 50 \text{ Hz})$. This difference² in peak width may be explained in terms of anisotropic tumbling with the axial CO relaxing at a faster rate than the equatorial carbonyls. These two different types of peak shapes for the environmentally different carbonyls has also been observed for *cis*-Mo(CO)_4L₂ complexes [9].

To obtain an ¹⁷O NMR spectrum at natural abundance with most metal carbonyls a 0.3 M or greater solution is required*. Where compound solubility

TABLE 1

 $^{^{*17}}$ O NMR spectra were obtained with a Varian XL-100-15 spectrometer operating in the pulsed Fourier transform mode at 13.57 MHz. Because of the fast relaxation of the oxygen nuclei, a 90° pulse followed by a pulse interval of 0.15 sec was used for each scan. All spectra were observed at 28°C. Natural abundance sample concentrations of 0.3 to 0.5 M gave an adequate signal to noise ratio with an average of 65 \times 10³ transients per sample. The ¹⁷O chemical shifts were measured relative to an external standard, ¹⁷O-enriched H₂O, with downfield values being positive.

was too low, oxygen-17 enrichment was employed. Exchange of $Mn(CO)_5X$ (X = Cl or Br) with C¹⁷O (ca. 22% enriched) was accomplished at room temperature in chloroform [11]. Reflux of a heptane solution of $Mn(C^{17}O)_5Br$ formed ¹⁷O-enriched $Mn_2(CO)_8Br_2$ [12]. The ¹⁷O NMR spectrum of this halogen bridged dimer contains two carbonyl signals of equal area. Comparison with the shielding values of $Mn(CO)_5Br$ (see Table 1) suggest that the high field signal at 381.3 ppm is due to the carbonyl groups *cis* to both bridging bromine atoms. The carbonyl resonances of *cis*-Mn(CO)₄(PPh₃)Br [13] and *fac*-Mn(CO)₃(PMe₂Ph)₂Br [13, 14] are all shielded relative to $Mn(CO)_5Br$. (The infrared spectrum easily distinguishes the facial and meridional isomers of $M(CO)_3L_2X$ complexes [14, 15].) Substitution with two phosphine groups on $Mn(CO)_5Br$ shifts the carbonyl resonances further upfield than substitution with one phosphine. Comparison of the ¹⁷O NMR data suggests that the lowest field signal at 379.7 ppm of *cis*- $Mn(CO)_4(PPh_3)(Br)$ is due to the carbonyl group *trans* to bromine.

References

- 1 L.J. Todd and J.R. Wilkinson, J. Organometal. Chem., 77 (1974) 1.
- 2 O.A. Gansow, A.R. Burke and G.N. LaMar, J. Chem. Soc. Chem. Commun., (1972) 456.
- 3 S. Aime, G. Gervasio, L. Milone and E. Rosenberg, Trans. Met. Chem., 1 (1976) 177.
- 4 S. Aime and L. Milone, Progress in NMR Spectroscopy, 11 (1977) 183.
- 5 L.J. Todd and J.R. Wilkinson, J. Organometal. Chem., 80 (1974) C31.
- 6 H. Wawersik and F. Basolo, Chem. Commun., (1966) 366.
- 7 M.S. Wrighton and D.S. Ginley, J. Amer. Chem. Soc., 97 (1975) 2065.
- 8 J.P. Hickey, J.R. Wilkinson and L.J. Todd, J. Organometal. Chem., 179 (1979) 159.
- 9 R.L. Kump and L.J. Todd, J. Chem. Soc., Chem. Commun., (1980) 292.
- 10 Y. Kawada, T. Sugawara and H. Iwamura, J. Chem. Soc. Chem. Commun., (1979) 291.
- 11 B.F.G. Johnson, J. Lewis, J.R. Miller, B.H. Robinson, P.W. Robinson and A. Wojcicki, J. Chem. Soc. A, (1968) 522.
- 12 E.W. Abel and G. Wilkinson, J. Chem. Soc., (1959) 1501.
- 13 R.J. Angelici and F. Basolo, J. Amer. Chem. Soc., 84 (1962) 2495.
- 14 R.J. Angelici, F. Basolo and A.J. Poe, J. Amer. Chem. Soc., 85 (1963) 2215.
- 15 A.M. Bond, F.R. Keene, N.W. Rumble, G.H. Searle and M.R. Snow, Inorg. Chem., 17 (1978) 2847.